When I was a kid, one of the more thoroughly enjoyable films that my cousin, sister, and I frequently watched was Planet of Dinosaurs. This movie has something of a cult following today and the title really says all that you need to know. Of course, you don’t need to recreate dinosaurs in a laboratory if there’s a planet teeming with these beasts close enough for us to take a spaceship (packed with really snappy space outfits) and arrive in a relatively short period of time.
Set well into the future, the crew of a disabled spaceship crash-lands on a distant planet remarkably similar to Earth. Much to the dismay of the survivors, this planet, determined to be younger than Earth, is inhabited by dinosaurs (or, at least, creatures that really, really resemble dinosaurs). Some of the dinosaurs are less than hospitable to the newcomers and, ultimately, the human characters are forced to get really creative to dispatch the local Tyrannosaurus (this Tyrannosaurus was made out of clay). I really shouldn’t make joke of that – this film won the 1980 Saturn Award for “Best Film Produced under $1,000,000”. Special recognition was given to the films stop motion effects, which heavily involved the use of clay models.
This seemed to be almost ideal for me. As a child, I loved dinosaurs (I still do) and would have loved to travel the galaxy to see the sights (I still would) – especially if there were dinosaurs out there (please let there be)!
Of course, I spent the next two decades of my life hearing that extraterrestrial life would almost definitely not consist of dinosaurs. Or giant bugs. Or little green men. Or even little grey men. A countless number of researchers and scientists have offered a similar reality: we can’t possibly begin to imagine the shapes and forms extraterrestrial life might assume. There have also been plenty of suggestions from the scientific community that extraterrestrial life may be unrecognizable as life to mankind.
Then Planet of Dinosaurs came roaring back. A recent study suggested that Earth may have been seeded with life by a meteorite billions of years ago. This meteorite would have brought the chemical building blocks for all life that has ever existed (sans perhaps just a few bacteria) on Earth. Where there was one meteorite, there may be been two, or a dozen, or a hundred. Planets across the Milky Way could have been seeded with the same amino acids and sugars. If the mixture occurred elsewhere in just the right way, however unlikely, there could be dinosaur-like creatures roaming around on a planet in a nearby star system.
Although the dinosaur part really appeals to me in a nostalgic way, that’s not what is worthwhile to me about this study. When I first read this (and later, similar, research), my initial thought was “if there is life nearby, maybe it’s a little more similar to us than expected.”
This goes a step farther. Earth, having life genuinely created here or seeded from the cosmos, could have, in turn, spread the proper organic necessities to some very close neighbors. There is a term for this possibility: lithopanspermia. Rocks harboring microscopic life from the Earth could have been ejected by meteor strikes into space eons ago. These rocks may have subsequently struck other bodies in our solar system. Lithopanspermia, of course, remains unproven as a means of spreading life from one planetary body to another. There is no firm evidence that microorganisms could survive a journey through space.
However, a study from Pennsylvania State University has demonstrated that, over the last three billion years or so, somewhere between one and ten rocks ejected from the Earth has struck Europa. Europa, one of Juptier’s moons, is the favorite darling of those believing extraterrestrial life may be found somewhere in our solar system.

Imagine now a rock (or rocks) from Earth, carrying early indigenous (and very simple) life forms, smashing through the ice on Europa and plunging downward in the massive ocean dominating that moon. A popular theory holds that life originated on Earth near deep-sea vents that seeped valuable mineral content and heat into the ocean. Such vents are also believed to exist on Europa. Our Earth microbes survive their hypothetical space journey and settle to the bottom of Europa, introducing life to this new world and continuing their evolution – perhaps with a subtle twist or two.
This serves as a critical plot point in Dying Up There. Set several decades in the future, the protagonist, Mark Helling, is a crew member of the first human expedition to Europa. The search for extraterrestrial life has ended, but this meeting isn’t a discovery as much as it’s a reunion. What Helling and his companions encounter might seem strange, but there’s a discomforting familiarity present. After all, the human characters and this newfound entity are made of the same stuff – each have origins in the same primordial soup found on Earth eons ago. Both grew apart over the eons, but they go way back – for better or worse.
How will extraterrestrial life look if such is found? I am still caught up in the idea of “alien dinosaurs“. Are those out there somewhere or what?